Image Enhancement



Image Enhancement 

Image enhancement improves the visual appearance of an image or makes it more suitable for analysis and interpretation.

Image Enhancement

Spatial Domain Image Enhancement

Spatial domain methods operate directly on image pixels.

Where:

  • f(x,y) → input image
  • g(x,y) → enhanced image
  • T → transformation function

Gray Level Transformations

Gray level transformations modify pixel intensity values.

Image Negative

Used to enhance white or gray details in dark regions.

Input (r)Output (s)
DarkBright
BrightDark

Application: Medical imaging, X-ray images

Logarithmic Transformation

Expands dark pixel values and compresses bright values.

Use: Fourier spectrum display

Power-Law (Gamma) Transformation

γ ValueEffect
γ < 1Brightens image
γ > 1Darkens image

Application: Gamma correction in monitors

Piecewise Linear Transformation

Used for contrast stretching.

TechniquePurpose
Contrast stretchingImproves contrast
Gray level slicingHighlights ranges
Bit-plane slicingBinary image analysis

Histogram Processing

A histogram represents the distribution of gray levels.

Image Histogram

FeatureDescription
x-axisGray levels
y-axisFrequency

Histogram Equalization

Redistributes gray levels to improve contrast.

Advantages:

  • Automatic contrast enhancement
  • No parameter tuning

Limitation:

  • May over-enhance noise

Histogram Specification (Matching)

Maps histogram to a desired shape.

Application: Medical & satellite images

Histogram Equalization vs Specification

FeatureEqualizationSpecification
OutputUniformUser-defined
ControlLowHigh
ComplexitySimpleModerate

Basics of Spatial Filtering

Spatial filtering modifies pixel values using a filter mask (kernel).

Spatial Filtering Equation

Where:

  • w(i,j) → filter mask
  • f(x,y) → input image

Types of Spatial Filters

Filter TypePurpose
SmoothingNoise removal
SharpeningEdge enhancement

Smoothing Spatial Filtering

Used to reduce noise and detail.

Mean (Averaging) Filter

Effect: Blurs image

Weighted Mean Filter

Gives higher weight to center pixel.

Median Filter

Replaces pixel with median value.

Best for: Salt-and-pepper noise

Comparison of Smoothing Filters

FilterNoise RemovalEdge Preservation
MeanGoodPoor
WeightedBetterModerate
MedianExcellentGood

Sharpening Spatial Filtering

Used to highlight edges and fine details.

First-Order Derivative (Gradient)

OperatorMask
Roberts2×2
Prewitt3×3
Sobel3×3

Sobel Mask (Horizontal)

Second-Order Derivative (Laplacian)

Property: Highlights regions of rapid intensity change

Unsharp Masking & High-Boost Filtering


kEffect
1Unsharp masking
>1High-boost

Smoothing vs Sharpening

FeatureSmoothingSharpening
PurposeNoise reductionEdge enhancement
EffectBlurHighlight details
FiltersMean, MedianSobel, Laplacian

Applications

TechniqueApplication
Histogram equalizationMedical images
Median filterNoise removal
Sobel operatorEdge detection
LaplacianImage sharpening

Introduction to Frequency Domain Processing

In frequency domain processing, an image is transformed from the spatial domain to the frequency domain, processed, and then converted back.

Basic Idea

Where:

  • f(x,y) → input image
  • F(u,v) → frequency representation
  • g(x,y) → enhanced image

Why Frequency Domain?

ReasonExplanation
Low frequenciesRepresent smooth areas
High frequenciesRepresent edges & noise
FilteringEasy separation of components

Fourier Transform (FT)

2D Discrete Fourier Transform

F(u,v)=x=0M1y=0N1f(x,y)ej2π(uxM+vyN)

Inverse DFT

f(x,y)=1MNu=0M1v=0N1F(u,v)ej2π(uxM+vyN)

Properties of Fourier Transform

PropertyMeaning
LinearitySum of transforms
PeriodicityRepeating spectrum
SymmetryComplex conjugate
ConvolutionMultiplication in frequency domain

Frequency Domain Filtering

Filtering Equation

G(u,v)=H(u,v)F(u,v)

Where:

  • H(u,v) → frequency filter

Smoothing (Low-Pass) Frequency Domain Filters

Low-pass filters suppress high-frequency noise.

Ideal Low-Pass Filter (ILPF)

H(u,v)={1D(u,v)D00D(u,v)>D0H(u,v) = \begin{cases} 1 & D(u,v) \leq D_0 \\ 0 & D(u,v) > D_0 \end{cases}
FeatureDescription
CutoffSharp
RingingHigh
Practical useLimited

Butterworth Low-Pass Filter (BLPF)

H(u,v)=11+(D(u,v)D0)2n​
ParameterMeaning
D₀Cutoff frequency
nFilter order

Gaussian Low-Pass Filter (GLPF)

H(u,v)=eD2(u,v)2D02​
AdvantageExplanation
No ringingSmooth transition
Best visual resultPreferred

Sharpening (High-Pass) Frequency Domain Filters

High-pass filters enhance edges and fine details.


Types of High-Pass Filters

FilterDescription
Ideal HPFSharp cutoff
Butterworth HPFSmooth cutoff
Gaussian HPFNo ringing

High-Pass Filter Relation

HHP(u,v)=1HLP(u,v)

Comparison of Frequency Domain Filters

FeatureIdealButterworthGaussian
TransitionAbruptGradualVery smooth
RingingSevereModerateNone
Practical useLowMediumHigh

Homomorphic Filtering

Purpose: Separates illumination and reflectance components of an image.

Image Model

f(x,y)=i(x,y)r(x,y)

Taking log:

lnf=lni+lnr

Steps in Homomorphic Filtering

  • Log transformation
  • Fourier transform
  • High-pass filtering
  • Inverse FT
  • Exponential operation

Advantages

BenefitUse
Illumination correctionUneven lighting
Contrast enhancementMedical images

Color Image Enhancement

Color image enhancement improves visual quality of color images.

RGB-Based Enhancement

  • Enhance each channel separately
  • Risk of color distortion

HSI-Based Enhancement (Preferred)

StepDescription
Convert RGB → HSISeparate intensity
Enhance IntensityHistogram or filtering
Convert backHSI → RGB

Advantage: Preserves original color information

Frequency Domain Color Enhancement

  • Apply frequency filtering on Intensity component
  • Used in satellite & medical images

Applications

TechniqueApplication
Gaussian LPFNoise reduction
Butterworth HPFEdge sharpening
Homomorphic filteringIllumination normalization
Color enhancementRemote sensing

Exam-Oriented Key Points

  • Draw frequency filter shapes
  • Write ILPF, BLPF, GLPF formulas
  • Explain homomorphic filtering steps
  • Compare Ideal vs Butterworth vs Gaussian